线性代数介绍

  线性代数是代数的一个分支,它以研究向量空间与线性映射为对象;由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点.1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。
  由于它的简便,所以就代数在数学和物理的各种不同分支的应用来说,线性代数具有特殊的地位.此外它特别适用于电子计算机的计算,所以它在数值分析与运筹学中占有重要地位。

    线性代数的地位


华南理工大学理学院应用数学系 国家工科数学教育基地 研制
高等教育出版社 高等教育电子音像出版社 出版发行